
pypilot
Official pypilot User Manual

Sean D'Epagnier

GPLv3

Table of contents

31. Introduction

31.1 Motivation

31.2 Philisophy

32. Hardware and Installation

32.1 Mounting Instructions

42.2 Electrical Connections Overview

72.3 Maintainance

82.4 Mechanical Installation

142.5 Remote Controls

173. Software and Usage

173.1 Initial Powerup

183.2 LCD menu interface

223.3 pypilot OpenCPN plugin

303.4 python scripts

343.5 Web interface

393.6 Configure Wifi

413.7 Configure LCD Keypad and Remotes

423.8 Calibration Instructions

513.9 Tuning Gains

533.10 Configuring Parameters

543.11 Operation

563.12 Supported Data Formats

573.13 Advanced Usage

593.14 Upgrading Software

594. Technical and Support

594.1 Design Decisions

604.2 Mechanical Description

624.3 Technical Specifications

624.4 fuse and internal resistance

634.5 Additional Support

635. Appendex A - Motor controller flags

636. Appendex B - Displayed errors

Table of contents

- 2/63 - GPLv3

1. Introduction
Last updated 7/29/2024

1.1 Motivation

I have always relied on autosteering. Mechanical vanes have limitations, and as I looked for free software solutions

I found limited options. For this reason pypilot was created to offer an autopilot we can all trust and extend and

modify to fit our needs.

1.2 Philisophy

pypilot is free software (GPLv3) and as such you can trust it both to steer as intended and for future use without

restrictions. Because the freedom to modify is guarenteed, users from around the world continuously contributed

improvements, even small ones to the benefit of all users.

2. Hardware and Installation
2.1 Mounting Instructions

Find a good location on the boat to mount the autopilot computer. While the pypilot computers do come in a

waterproof enclosure, it is wise to mount the unit inside the boat to protect it from the elements. If you were to

mount it outside, consider additional protection (clear enclosure) or to use a separate unit in remote mode

The autopilot computer has 9 degrees of freedom IMU. This is 3 axes of accelerometer, gyroscope and magnetic

sensor. As a general guideline for each sensor:

Accelerometers: mount the unit near the center of the boat as the bow and stern experience the largest

accelerations

Gyros: avoid mounting near potential vibrations

Compass

avoid ferromagnetic metal. On a metal boat mount 1 meter or more from the hull or metal bulkheads.

avoid magnets, especially floating compasses (moving magnets) and speakers.

avoid current carrying wires, especially ones with dynamic current (solar power etc). Twist power wires

to reduce EMI in power wires. The distance of a few inches (10 cm) or so is generally more than

sufficient.

avoid mounting in a location near objects that are often moved and replaced (tool draws etc)

power wires to/from motor controller should be routed to not pass too close to the inertial sensors.

The biggest concern for mounting location is magnetic interference. The effect is relatedv to the cube of the

distance, so proximity is the biggest concern. The effect can quite simply be tested by comparing the compass

readings while intentionally applying interference through wires or other means to get a feel for the sensitivity. In

general the effect is only a problematic when objects are placed within a few inches (cm) of the compass sensors.

•

•

•

◦

◦

◦

◦

◦

1. Introduction

- 3/63 - GPLv3

2.2 Electrical Connections Overview

2.2.1 Motor controller data connection

The motor controller communicates to the autopilot computer with a 4 wire data cable. The wires carry:

3v3 power

tx

rx

gnd

The connectors from various pypilot products are interchangible, but because the factory has changed the wire

colors the function must be determined from the following table. Each cable is either 1, 2 or 3, depending on which

color wires are present.

1 2 3 purposeraspberry pin

Red Brown Black +3.3v 1

Green White Brown tx 8

Blue Blue Green rx 10

Black Black Blue 0v, GND 6, 9

The 3v3 power is used only to power the optical transmitter/receiver on the motor controller and only carries a few

milliamps. The baud rate is 38400 and low enough that very long wires can generally be used between the motor

controller and computer at least 100ft unless there is significant interference from other nearby wires, but it

should be possible to avoid this. If you are especially concerned with interference you could use a shielded cable or

various other approaches, but this is rarely if ever a concern in practice. The connection can be extended using

phone cable or even ethernet cable for example.

2.2.2 Power

The autopilot computer receives power via USB-C. A typical power converter may take 12 or 24 volt power and

convert it to the 5 volt power to the raspberry pi requires. The typical power consumption using a raspberry pi zero

is 0.07 Amps with 12 volt input to a converter. The autopilot computer includes protection circuitry to prevent

1.

2.

3.

4.

2.2 Electrical Connections Overview

- 4/63 - GPLv3

overvoltage, reverse voltage and short circuits. The power converter should be mounted away from the autopilot

computer to avoid interfering with the compass sensors.

The remote keypads (besides battery powered ones) also need 12/24 volt power to operate and can be simply wired

to the same power as the usb power adapter. The keypad with the "menu" key is intended to be mounted near the

autopilot computer.

The motor controllers need power input to drive the motor. The regular motor controller must only be powered

with 12 volts (9-16 volt range) while the mid power and high power motor controllers can be used with 24 volt

systems. Always use o-ring connectors on the motor controller and avoid wrapping bare wires around the screws

for long-term reliability.

2.2.3 USB Data

There is typically a usb port available for optional use to connect a GPS or other sensor such as wind. It is also

possible to connect a usb to nmea converter (recommended pypilot isolated adapter) to interface with nmea0183

sensors or the pypilot_mfd. It is also common not to use the USB port, or consider it for future use.

2.2.4 Clutch Output

Some drive systems, especially larger ones may use a clutch output. This usually either activates a solenoid

(hydraulic) or electric clutch to engage a ballscrew (large linear drives) The clutch output shares the positive

power wire with the motor controller, and provides a low output (ground) when the pilot is enabled, or manually

commanded to move. The mid power and high power motor controllers both have clutch output, and the 2 clutch

wires would typically be attached to the clutch (far left) and power + connection which is right next to the clutch

output.

Typically the clutch outputs full power for 200-300ms, then reduces to a PWM signal to hold the clutch on while

minimizing power consumption. The value of the clutch output duty can be configured with the "servo.clutch_pwm"

key.

2.2.3 USB Data

- 5/63 - GPLv3

2.2.5 Rudder Feedback

First of all, the rudder feedback is optional. It can be disconnected while underway and pypilot will continue to

steer. It is generally used to avoid relying on stall detection and to report the rudder angle on a display. It also may

be used by certain pilot algorithms to enhance steering, but the basic pilot algorithm does not require it. To be

clear, corrections needed in moderate conditions are 10 or more times that of the errors due to integration from

not knowing the rudder position, so the potential improvement in steering performance from rudder feedback is

not huge.

The rudder feedback used is connected directly to the motor controller. This is because it produces an analog

voltage (changing voltage) with rudder angle. If you have an existing rudder feedback that does this, you can safely

reuse it however be aware that the acceptable ohm range is 1k to 100k ohms. The pypilot rudder feedback is fully

waterproof and instead uses an angular hall sensor and magnet to provide a changing voltage with angle avoiding

wear issues of potentiometers. The motor controller provides 5 volt power to the rudder feedback sensors on the

red and black wires, and the input (changing voltage is received on the yellow wire)

2.2.5 Rudder Feedback

- 6/63 - GPLv3

As for the motor controller, there are different combinations of wire codings possible depending on the wire colors

present:

1 2 3 purpose

Red Brown Red +5v

Yellow Blue Black voltage for angle

Black Yellow Blue GND

The connection on the motor controller is labeled "Rudder" The square pin is GND, the center pin is the feedback

voltage pin, and the last pin is 5v power. You can verify with a voltmeter by measuring the voltage of the pins when

the motor controller is powered.

It is not critical that the voltage increases or decreaes with rudder angle as the rudder feedback calibration takes

care of the direction.

It is possible to use rudder feedback from the network into pypilot rather than through the motor controller, but the

reaction time and and performance is not as good.

2.2.6 End of Travel Switches

The end of travel switches prevent further movement in each direction when closed. These are optional, but may be

useful on certain drive systems to avoid relying on stall detection as it reduces the loads on the mechanical system.

Closed means the switch wire is shorted to GND. The pins are labeled "End Stops" on the motor controller, and the

GND pin is square. Some motor controllers provide 5v as well to allow the use of hall sensors, for example a

magnet passing near a hall sensor could trigger the switch. Otherwise some sort of spring is needed on a

momentary switch.

2.2.7 Temperature Sensor

The motor controllers all include onboard temperature sensors, but it is also possible to monitor the temperature of

the motor or pump. To do this attach a 10k NTC sensor to the pins labeled "Motor Temp". The temperature limit

can be configured to protect the drive from overheating, but in practice the motor should never get anywhere near

the typical setting of 60C.

2.3 Maintainance

Over time electrical contacts can looses from seasonal temperature changes. The terminals chooses for the motor

controller minimize the issue, but it is a good idea to check them and ensure the terminals are tight after a winter

or longer period of time.

Linear actuators used to move the rudder should be stored out of the weather when not in use to prolong their life.

Avoid storing them in areas of the boat that can become very hot and humid such as fully sealed compartments as

2.2.6 End of Travel Switches

- 7/63 - GPLv3

this can significantly increase corrosion. It is best to store them below and keep the boat ventilated, the same

applies to the electronics.

2.4 Mechanical Installation

2.4.1 Suggested drive types

For more information on suggested drives see: actuators

Tiller-steered boats

A basic linear actuator is recommended. This is a simple solution and easy to mount and remove. Typically a

tillerpilot pin is mounted on the tiller, either by drilling a hole in the tiller itself, or a small block of wood that is

hose clamped or attached with lashings to the tiller. The pin provides a ball-socket type connection to the linear

actuator allowing slight rotation in both axes as it moves in and out. The linear actuator should also be attached to

the boat via a pin and bushing to allow slight rotation in both axes as it moves. This is needed to minimize "play" in

the system which will reduce reaction time and efficiency.

2.4 Mechanical Installation

- 8/63 - GPLv3

http://pypilot.org/actuators/

The linear actuator itself can be an existing tiller drive, or a linear actuator. The speed, force and range will vary

from boat to boat. Usually a faster drive is better as it can correct sooner and keep a straighter course which

means less overall movement and power consumption. The force required really depends on the vessel, with

unbalanced rudders with significant weather helm requiring many times more force than balanced rudders with

balanced sails.

2.4.1 Suggested drive types

- 9/63 - GPLv3

Wheel Steering

For wheel steered boats it is possible to directly drive the steering wheel using a while drive system. One example

would be a 3d printed toothed pulley bolted to the spokes of the steering wheel driven by a windshield wiper motor.

The most difficult part of this arrangement is efficient engage and disengage ability to ensure you can easily take

over steering again. Another careful consideration is the alignment of the pulley on the wheel. A slight

misalignment can cause the pulley tension to change as well as skip teeth during rotation.

Typicaly gear ratios used are in the range of 4:1 to 8:1. A windshield wiper motor usually makes 1 rotation per

second, or 1.5 in high-speed mode.

Another consideration is an electric car power steering motor. These motors are many times more powerful than

windshield wiper motor and very durable and efficient.

2.4.1 Suggested drive types

- 10/63 - GPLv3

Hydraulic Steering

2.4.1 Suggested drive types

- 11/63 - GPLv3

2.4.1 Suggested drive types

- 12/63 - GPLv3

There are a variety of different hydraulic schematics for different boats depending if there are one or more

hydraulic steering wheels or if the wheel is cable driven. Suffice to say, any type of hydraulic system can be used

with pypilot provided an electric hydraulic pump can be used to move the rudder. If unsure about what size pump,

the larger one is recommended both for longevity (less heat) as well as speed of movement. Having a more

powerful pump may save power from faster corrections.

2.4.2 Speed of Movement

The speed that the motor can move the rudder is one of the most important considerations for a good autopilot

experience. The actual requirement widely varies based on conditions, point of sail, type of rudder and boat and

other factors.

As a boat moves faster, the rudder becomes more effective, so although it needs faster corrections, because the

rudder is more effective the two factors generally cancel out and the same tuning works well over a wide range of

2.4.2 Speed of Movement

- 13/63 - GPLv3

boat speeds. At very low speeds (drifting conditions) the corrections can be much slower, but this usually has more

to do with less dynamic corrections needed (fewer waves or wind gusting)

As a general rule aim to ensure a minimum of 6-8 seconds for +-30 degree rudder movement. Many boats have

installed slower systems and it is ok to use, but the autopilot performance is directly related to the speed it can

move the rudder. Larger boats do not need to move the rudder as fast as smaller ones. Light winds, or sailing

upwind does not need to move the rudder as fast as strong winds or running downwind. Rough weather or sailing

in wind against currents demands the most speed.

I have put an actuator on my 33ft trimaran which can move the rudder 15-20 degrees per second and I can say I

am quite happy with the performance. Movement of 10 degrees/s would be acceptable as well, but I would not wish

for anything slower except in light winds.

As an example on a keel-hung rudder, the speed of rudder movement required for running downwind is much

higher than upwind, however the force needed upwind with weather helm is much more than downwind. In this

scenario without having to have two actuators, it may be benefitial to have 2 pins on the tiller at different distances

to the rudder hinge for upwind vs downwind. Similarly in a hydraulic system it may be a consideration to have two

pumps and utilize both in rough weather.

In practice few boats take such measures, but it could be worthwhile to explore. With a balanced rudder the

situation is much simpler as the force required is generally very low. Generally the drive system must be sized for

the most difficult conditions, and pypilot can always be tuned to move the motor slower in light winds.

2.4.3 Clutch/Emergency disengage

It is essential to ensure you can quickly regain manual control if needed. Systems with an actuator always

connected such as larger electromechanical or hydraulic systems often have a clutch output and it is wise to wire a

manual switch accessible at the helm to ensure you can at all times take over manual control. For other systems

that manually engage like tiller pilots it is usually easy to lift the actuator off the pin, but a wheel driven system

should be carefully designed to ensure manual control is always easy to regain.

2.4.4 Range of Travel

Typically +- 30 degrees of movement is desired for tacking, but only +- 15-20 degrees needed for holding a course.

At a certain angle most rudders will "stall" at a specific speed and become less effective anyway. Higher rudder

angles may only be rarely useful when docking to act like a brake, or at very low speeds and are typically not useful

for the autopilot.

2.5 Remote Controls

2.5.1 433mhz wireless remotes

The most common remote control used with pypilot is the 433mhz remote control. These are commonly used for

garage door openers and other applications. This avoids interference with wifi and bluetooth, but importantly and

delivers a consistent reliable signal with low-latency to control the pilot. There are many low-cost 433mhz remotes

(with psk encoding) available online but they are technically not fully waterproof, for example:

2.4.3 Clutch/Emergency disengage

- 14/63 - GPLv3

There are a few remote controls designs specifically for pypilot that have some important improvements. First they

are fully potted or waterproof. These designs have keypads intended for autopilot use with +10 +1 -1 -10 buttons.

They send alternating codes and buffer presses to allow rapid key presses without losing codes. They send stop

codes to ensure good timing for manual control. They support pressing multiple keys (eg: tacking pressing +10 and

+1) and can also switch channels to avoid interfering with nearby boats with pypilot (holding +10 and -10 buttons

and selecting a channel) Other remote controls can be much lower cost but do not include these features.

7 key control panel

This control panel takes 12/24 volt power and provides standard +10 +1 -1 -10 keys. The Auto key toggles the pilot

enabled on or off. The menu key enters the lcd menu interface. The mode key changes to the next available mode.

Because of these functions, this keypad is intended to be mounted near the lcd display of the autopilot computer. It

is possible to reprogram the keys (eg: Auto to engage Menu to disengage) but the other control panel is more

suitable for use when the screen is not visible

2.5.1 433mhz wireless remotes

- 15/63 - GPLv3

8 key control panel

 This control panel also takes 12/24 volt power and provides the

standard +10 +1 -1 -10 keys. Rather than toggling enabled on/off it provides a standby button that always

disengages the pilot. The C, G, W buttons enable the pilot in Compass, GPS, and Wind modes. Pressing C and G at

the same time enters Nav mode, and G and W and the same time enters True Wind mode.

8 key remote panel

This is identical in function to the 8 key control panel except rather than taking 12/24 volt power it uses 2xAA

batteries making it simple to mount on the boat without running power to it. The standby current is 4-6uA so

typically the batteries should last for several years, but it is recommended to use alkaline batteries regardless.

2.5.1 433mhz wireless remotes

- 16/63 - GPLv3

The remote controls can be configured using a web browser, see Configure LCD Keypad and Remotes

3. Software and Usage
The user manual assumes the use of a separate raspberry pi for running pypilot using the tinypilot system in most

cases. If running pypilot under openplotter or another operating system be aware that some of the documentation

is relevant only to that configuration.

3.1 Initial Powerup

3.1.1 Boot Splash

The initial splash screen is displayed 10-15 seconds after power up. It indicates the version of pypilot and may be

useful in debugging the system.

3.1.2 led on motor controller

When power is applied to the motor controller, a red led should light indicating power. There is a green and yellow

led which indicate data is recieved and transmitted that typically flash whenever it is communicating with the

autopilot computer. Finally a white or blue led indicates the controller is engaged and commanding the motor.

If only a red appears, there is a communication problem. If yellow or green stays lit constantly, there is likely a

shorted connection.

3.1.3 Power off

pypilot running on the standard autopilot computer utilizing a pi zero typically runs a special distribution of linux

called tinypilot. This is based on tinycore linux and after boot the system runs entirely out of ram. For thi reason,

power can be removed from the autopilot computer at any time without much risk. It is possible to run tinypilot on

various models of raspberry pi, but there is not much reason to use a larger pi as tinypilot is dedicated to running

just pypilot and the processing power is sufficient.

For systems running openplotter or other distributions it might be advisable to shutdown in a controlled manner,

the system typically will only not boot if the boot partition is corrupted which is usually not mounted, so is rarely an

3. Software and Usage

- 17/63 - GPLv3

issue even then for losing power, but it is possible to have a switch cleanly shutdown. For ultimate reliability you

could keep a spare sd card ready to boot.

3.2 LCD menu interface

The standard pypilot computer has a COG daylight visible lcd module which displays the current Heading and the

desired Course. Below the available modes.

Key AP enabled AP disabled Function in menu

-10 adjust heading command -10 degrees Manually move rudder fast Move UP/LEFT Fast

-1 adjust heading command -1 degree Manually move rudder slow Move UP/LEFT

+1 adjust heading command +1 degree Manually move rudder slow Move DOWN/RIGHT

+10 adjust heading command +10 degrees Manually move rudder fast Move DOWN/RIGHT Fast

Auto disable autopilot enable autopilot Exit Menu

Menu Enter Menu Enter Menu Select, enter submenu

Mode Next Mode Next Mode Go to previous menu

manual control moves the rudder while the key is held down and stops when it is released.

Another function is tacking which can be initiated by pressing -10 -1 together for port tack and +1 +10 together for

starboard tack.

•

3.2 LCD menu interface

- 18/63 - GPLv3

The main menu offers several functions to configure the device

3.2.1 Gains

The gains menu allows for changing the profile as well as gains. When a new profile is selected all of the gains are

updated.

3.2.2 Calibrate

3.2.1 Gains

- 19/63 - GPLv3

The calibrate menu allows:

level - select only when the boat is level with the sensor mounted

heading - adjust the heading offset of the compass

lock - locking the compass calibration

rudder - calibrating the rudder feedback.

At the bottom of the screen, pitch and roll values are indicated. When properly leveled these should read near zero

whenthe boat is level.

See Calibration Instructions

3.2.3 Settings

The settings menu includes:

Mode - Adjust the autopilot mode (useful if the remote/keypad does not have a mode button)

Pilot - Change the pilot algorithm. Most users will use the basic pilot

Motor - Adjust motor parameters

•

•

•

•

•

•

•

3.2.3 Settings

- 20/63 - GPLv3

Control - Adjust wifi settings, and steps for + and - buttons. If the wifi settings are changed, and you are

unable to connect, it is possible to revert back to AP mode using this menu to reconnect to the pilot again.

Display - Adjust various parameter for the lcd display

Language - Select the language used for text on the display

3.2.4 Info

•

•

•

3.2.4 Info

- 21/63 - GPLv3

The info screens display basic information about the software, the power consumption and temperature voltage,

runtime and rates. To change the page use the + and - keys.

3.3 pypilot OpenCPN plugin

The pypilot plugin can be used to configure and control the autopilot from within OpenCPN. It provides special

integration and a unique control interface.

3.3 pypilot OpenCPN plugin

- 22/63 - GPLv3

3.3.1 Installing the plugin

3.3.1 Installing the plugin

- 23/63 - GPLv3

3.3.1 Installing the plugin

- 24/63 - GPLv3

Usually the pypilot plugin can be installed within OpenCPN using the plugin manager. The latest version of the

plugin is 0.51 but older versions generally will work. It is also possible to build the plugin from source for advanced

use. Coupled with the autopilot route plugin, opencpn steers routes more closely than the builtin route following

algorithm.

You might also consider exploring the OpenCPN watchdog plugin which includes pypilot specific alarms.

3.3.1 Installing the plugin

- 25/63 - GPLv3

3.3.2 pypilot dialog

When clicking the toolbar icon, the dialog is displayed. The basic dialog provides manual control, course changes,

mode settings, tacking, and buttons to open additional dialogs.

Along the top the servo flags are displayed.

3.3.2 pypilot dialog

- 26/63 - GPLv3

3.3.3 gains

The gains dialog provides means to visualize and adjust gains. Each gain has a vertical slider to adjust the setting

along with an animated indicator showing the current output of that particular gain. For example, if the gain is red,

it is contributing toward a starboard correction, and blue indicates a port. If the gain is in blue, it has saturated.

This means it is beyond the maximum which is the fastest speed the motor could move. This usually indicates that

the gain is set too high, or the motor is too slow to make sufficient corrections. See gains for information about

adjusting the gains.

Below the gains, the profile can be set. profiles can also be added and removed here. Next is an option to set the

pilot. Most users will use the basic pilot at this time.

3.3.4 calibration

The calibration dialog can be used to visualize calibration of the autopilot

3.3.3 gains

- 27/63 - GPLv3

3.3.4 calibration

- 28/63 - GPLv3

3.3.5 settings

The most common settings users might need to adjust are available from the settings dialog. Additional settings

can be adjusted using the pypilot client.

3.3.5 settings

- 29/63 - GPLv3

3.3.6 stats

Statistics can be found here, including the software version, runtimes, power consumption, voltage, temperatures,

and data sources.

3.4 python scripts

pypilot can also be configured and controlled by python scripts. These scripts are installed when pypilot is

installed, and can also be run on a separate linux system. For example, if openplotter is networked to a tinypilot

system via wifi, you could run these scripts on the openplotter system to control pypilot. You could also install them

on a laptop.

For most linux distributions they can be installed by installing pypilot, eg: git clone --depth 1 github.com/pypilot/pypilot

cd pypilot

sudo python3 setup.py install The scripts will attempt to auto-detect pypilot but can also usually be passed the host or ip

of the autopilot from the command line.

3.3.6 stats

- 30/63 - GPLv3

3.4.1 pypilot_control

The pypilot_control script is the main script giving control, status as well as gains adjustments. You can adjust the

profile, pilot and mode

Along the top the servo flags are displayed along with the tack button.

3.4.1 pypilot_control

- 31/63 - GPLv3

3.4.2 pypilot_scope

You can run the pypilot scope by executing pypilot_scope from the command line.

The pypilot scope provides a graphical display that can plot continuously changing data the autopilot is aware of.

3.4.2 pypilot_scope

- 32/63 - GPLv3

The following keys are supported (you may need to click on the plot first)

numbers 0,1,2..9 - Select current trace

+/- - increase/decrease scale

f - freeze/unfreeze

p - draw points/lines

c - center current trace (changes offset)

C - center all traces

v - toggle visibility

V - toggle all visibility

z - reset trace offset to zero

Z - reset all trace offsets

w - toggle fft

UP/DOWN - move current trace up or down (adjust offset)

Check the fields to monitor, for example imu.gyro will plot the gyros axes. It may be useful for example to plot

ap.heading_error while adjusting the pilot gains underway and see how tuning affects the heading error over time.

3.4.3 pypilot_calibration

You can run the pypilot calibration by executing pypilot_calibration from the command line.

•

•

•

•

•

•

•

•

•

•

•

•

3.4.3 pypilot_calibration

- 33/63 - GPLv3

3.5 Web interface

The pypilot web interface provides a method for controlling the autopilot using a web brower. This is able to

support a wide variety of devices. The web interface can be accessed from a browser on a device connected to the

pilot. Typically this is http://pypilot.io if the dns resolves, but otherwise the default IP address when pypilot is in AP

mode is http://192.168.14.1

The web control interface takes longer to boot than the rest of the pilot. It has been optimized to get steering

available as soon as possible and to delay loading the systems required for the web by a few minutes, so be aware

of this if it does not load immediately after booting.

The web control has various tabs at the top of the page described below.

3.5 Web interface

- 34/63 - GPLv3

3.5.1 Control

The control page has the main control for pypilot. The heading and command are displayed at the top, and when

the pilot is not enabled, the buttons << < > >> are displayed, and tapping and holding each button will manually

move the drive. If a rudder feedback is installed, an additional button | will be displayed and it can be used to

center the helm.

The autopilot mode can be changed with the choice combo dropdown.

Below (on small screens may require scrolling) the ap enable/disable toggle switch is on the lower left. To toggle,

simply tap this switch (do not need to slide) On the lower right, the tack button can be found to tack the boat. Some

other statistics and information is also displayed.

3.5.1 Control

- 35/63 - GPLv3

3.5.2 Gain

This page allows changing the profile which will adjust all of the gains (and server parameters) along with the

actual gains. On mobile devices << < > >> buttons can be tapped where on desktop a slider is provided. See

Tuning Gains for the actual adjustments

3.5.2 Gain

- 36/63 - GPLv3

3.5.3 Calibration

The calibration page is essential to calibrating the pilot for correct operation. The web interface provides a button

to level.

There is a text area for compass offset, and boxes to lock the calibrations

A separate link to the calibration plot (useful for accelerometer and compass calibration)

Finally the rudder feedback can be calibrated by tapping the appropriate buttons and entering the rudder range.

See Calibration Instructions

3.5.3 Calibration

- 37/63 - GPLv3

3.5.4 Configuration

The configuration page allows selecting "Clear" or "Dark" theme which only affects the display in the web interface.

Next, some important parameters can be set. These are broken into 2 lists, the first are global parameters, while

the second set has settings that like the gains are connected to the current profile and will be updated if the profile

is changed. see Configuring Parameters

Below this there is a link to the pypilot client which allows viewing and adjustment of all possible parameters.

Next are links to Configure Wifi and Configure LCD Keypad and Remotes

Language

The language may be detected automatically for the system running the web browser however this could be

undesirable or annoying. You can manually override the language here.

NMEA Client host:port

Some nmea routers or systems cannot connect to pypilot, and instead need pypilot to connect to them as a client. If

this is the case you can put the host or ip address : port to use in this box. Normally it should be left blank

3.5.4 Configuration

- 38/63 - GPLv3

3.5.5 Statistics

The statistics page on the web interface shows basic stats on power consumption and use.

3.6 Configure Wifi

A link is provided to configure wifi from the Configuration tab of the web control. By default you can access this

with http://192.168.14.1/wifi or in a browser using the ip the autopilot computer is using. This applies only to

3.5.5 Statistics

- 39/63 - GPLv3

tinypilot systems. If you are using openplotter or other operating system refer to their instructions for configuring

wireless networks.

The autopilot computer can be configured as a wifi client, or AP+client (where it acts as an access point as well as

a client) or AP mode. By default it is in AP mode and wireless clients can connect to it. You may wish to switch it to

client mode to integrate it with an existing wifi network, however be aware that if you do not know the address of

the client once it connects it could be difficult to access. For this reason the AP+Client mode may be useful as it

still provides the access point.

It is reported that this mode is somewhat unreliable though, meaning that the AP+Client mode is probably only

good for accessing the device if the the client cannot be found. It is also possible to revert to AP mode via the lcd

menu interface, editing the networking file on the sd card, or reimaging the sd card. Please be aware of the

limitations and it is recommended to have access to the lcd menu interface in case the wifi client fails to connect.

If it does, connect you may wish to assign a static ip, or access your router to find the ip assigned to the autopilot.

It is usually possible to discover pypilot with another machine on the same network as well using pypilot client

Another option is to run the "nmap" command to discover the address assigned.

A list of connected clients will be displayed in a table.

3.6 Configure Wifi

- 40/63 - GPLv3

3.7 Configure LCD Keypad and Remotes

The LCD Keypad and Remotes can be configured via the web interface. There is a link to this page from the

Configuration tab of the web control, or typically it can be accessed via: http://192.168.14.1:33333

3.7.1 programming remote control/keypad

There are many different functions that can be assigned to a particular key. These keys can be remote control

panels, or even IR remote controls. Functions can also be assigned to gpio pins here (used by pypilot hat) including

pressing multiple keys at the same time.

3.7 Configure LCD Keypad and Remotes

- 41/63 - GPLv3

The pypilot control panels use alternating codes (for better reliability of presses) so each function must be

programmed twice, however they can typically be automatically programmed if detected.

The first 7 functions are tied to the lcd interface. In essence, their function depends on the state of the display,

intended to use with a remote near the screen. Using them without being able to see the screen is not advised.

Their functions are described here

Below these, there are additional functions that can be used which do not consider the display and should be used

for hand held remote or controls mounted anywhere on the boat.

3.7.2 analog inputs

As of this writing the analog inputs are not fully supported, but allow additional readings for example joystick

control

3.7.3 IR (infared receiver port)

The IR port receives signals from infared remote controls. Both the raspberry pi and the onboard arduino are

capable of decoding them, but some versions of software the raspberry pi will not decode them properly, and it is

difficult to program new remote control codes. For this reason, the arduino may be preferable. If you have trouble

programming an IR remote, try both options.

3.7.4 hat NMEA port

The hat NMEA port is available on pypilot hat provides isolated rs422 data port for nmea0183 input and output.

This port can be configured to enable/disable input and output and set the baud rate used.

3.7.5 Remote Mode

It is possible to use additional pypilot computers as control heads or displays for the main autopilot computer.

These can work over wifi, but if multiple computers have remote control receivers it is essential to ensure that only

the main computer is programmed to receive from the remote. A second pypilot computer could be mounted in a

different location providing the lcd display, and it could also function as a backup autopilot by turning off remote

mode and connecting the motor controller output to it if needed.

At the bottom, some statistics including the 5v and 3v3 voltages are displayed

3.8 Calibration Instructions

Calibration can be performed from any of the control interfaces but it is recommended to open the calibration plot

in either the Web Interface pypilot OpenCPN plugin or the pypilot_calibration script.

Once calibrated pypilot is ready to use.

3.7.2 analog inputs

- 42/63 - GPLv3

3.8.1 Accelerometer Calibration

3.8.1 Accelerometer Calibration

- 43/63 - GPLv3

Most recent pilots include the icm20948 sensors which are factory calibrated for accelerometer however many do

still have small biases that can be compensated for. It is not required to compensate for the small difference but it

can improve the accuracy of the compass by at least a few degrees. To calibrate the accelerometers they will have

to be unmounted from the boat so then can be rotated in various orientations. Typically tinypilot computers are

shipped with the accelerometers already calibrated, but if you have re-imaged the SD card it is a good idea to

perform this step.

Ensure the accelerometer calibration is not locked, and carefully hold the sensors so that each of the 6 sides of the

box is facing downward toward the earth in turn. Once this is performed, every 30 seconds a calibration update

may be attempted. If there is sufficient difference the calibration parameters will be updated and reflected on the

calibration display page, if not an output message in the calibration log should indicate the reason.

To calibrate the accelerometer bias, you must be on a “mostly” stable platform. It may be impossible to do at

anchor if the boat is moving too much, so either in flat water, or land for this step. Leave the sensors in each

position for a few seconds.

Once a calibration is applied the accelerometer calibration age should reset. If it does not, repeat the process

putting the sensors in different orientations until a calibration fix is found.

3.8.1 Accelerometer Calibration

- 44/63 - GPLv3

3.8.2 Leveling and Alignment

3.8.2 Leveling and Alignment

- 45/63 - GPLv3

3.8.2 Leveling and Alignment

- 46/63 - GPLv3

If the accelerometer are calibrated, the sensors can be fixed to the boat. The level button should only be pressed

when the boat is sitting level and not moving. If it is pressed at the wrong time, you can always try again when the

3.8.2 Leveling and Alignment

- 47/63 - GPLv3

boat is sitting level. A progress bar will indicate the period of time as the sensor readings are averaged for the

alignment computation. Once leveled, the pitch and roll readings should be nearly zero. Leveling is essential to

ensure the autopilot can read the correct heading.

Correct alignment calibration must be performed before the compass calibration can begin.

3.8.2 Leveling and Alignment

- 48/63 - GPLv3

3.8.3 Compass Calibration

3.8.3 Compass Calibration

- 49/63 - GPLv3

Be sure to locate the sensors away from:

magnets - speakers and especially moving magnets like a floating compasses current carrying wires - very simple

rule is 2 cm (1 inch) for every amp iron and steel - less critical, so if you are in a steel boat, just don't fix the

sensors to a steel wall, but try to locate them several inches at least offset from it. The compass calibration is

mostly automatic. If the accelerometer and alignment are calibrated, you just need to sail turning more than 240

degrees to calibrate the compass.

Make sure the calibration is not locked or updates will not occur. It may be useful to lock the calibration to prevent

updates while underway in case of rough seas.

There are both 2D and 3D compass calibration fixes. A 2D fix will occur from turning without pitching or heeling.

When heeling there may be some error without a 3D fix. To obtain a 3D fix, you should make a circle with sufficient

heeling, such as tacking against the wind, or rolling in waves.

Another way to achieve a 3D fix is to unmount the sensors and manually rotate them including some pitch and roll

to achieve a fix. Once a 3D fix is achieved, the sensors can be mounted to the boat. Now re-level the sensors and

rotate the boat through 360. If a 2D fix is achieved, the bias bias from the previous 3D fix will be used. If using this

method try to keep the sensors away from metal but near the location they will be mounted.

Subsequent 2D fixes will use the previous undetermined value for 3D fix, combining the new 2D fix with the past

information from a 3D fix. Performing an initial accelerometer calibrationand a quick manual rotation will give a

rough 3D fix in most cases making a subsequent 2D fix sufficient for most use.

Compass calibration is continuous and always updates unless locked. You may wish to lock it to prevent future

calibration updates.

If the sensors are remounted, they must be re-aligned and the compass recalibrated.

If metal objects are moved around the sensors, the compass must recalibrate. Moving metal obects near the

sensors underway can cause unexpected maneuvers including uncontrolled jibes.

3.8.4 Heading Offset

Once the compass is calibrated a heading offset can be entered depending on the orientation that the sensors are

mounted in the boat. Without this, the pilot can still hold a course, but the heading displayed will not match the

actual course. This corrects this offset as well as ensures the pitch and roll readings are correct. For example if the

heading offset is off by 90 degrees, the pitch and roll readings may be reversed.

3.8.4 Heading Offset

- 50/63 - GPLv3

3.8.5 Rudder

If a rudder feedback sensor is installed you can check the rudder calibration page to read the value and ensure it is

working. To calibrate the rudder, you must manually turn the helm to the port range, starboard range, and center

and press each button for each position. The order is not important, but once all 3 are completed the scale, offset

and non-linearity should be computed. The "rudder range" field should be manually set to indicate the true angle at

each range position and to limit autopilot movement past this position.

Note: It is possible to set the "rudder range" to say 35 degrees, and calibrate the rudder by moving it to 35 degrees

in each direction, and later set it to 30 degrees to further constrain the range the autopilot can move the rudder. So

to be clear, the "rudder range" is for calibration and whatever the value is when the button is pressed, but in

operation it specifies the maximum angle the motor controller can move the rudder to.

3.9 Tuning Gains

The basic autopilot uses an enhanced PID filter to form a feedback loop. Various gains can be adjusted to improve

performance and vary depending on the boat, seastate, and rudder drive motor.

The gains are as follows:

P - proportional - heading error

I - integral - based on the accumulated error

D - derivative - rate of turn

DD - derivative' - rate of rate of turn

PR - proportional root - square root of heading error

FF - feed forward - change in heading command

It is recommended to use the opencpn plugin, or pypilot_control for tuning the gains because visual feedback is

provided.

•

•

•

•

•

•

3.8.5 Rudder

- 51/63 - GPLv3

To get started retuning from scratch (or on a new boat) set all of the gains to zero, except the P and D gains. It is

possible to have a fully usable (but less efficient) autopilot using only these two gains.

Set the P gain to a low value (say .003) and the D gain to .01. Typically on larger boats, you will need higher values,

but this is typically because they have slower motors installed to move their rudders. It really depends on how fast

the drive motor turns the rudder and the conditions.

The hard over time is how long it takes to turn the rudder from end stop to end stop. This is typically 30 degrees

for each side. If a smaller motor is geared down more, and takes, say 16 seconds, then these gains should be

doubled to P=.006 and D = .02 as a starting point.

If the boat takes too long to correct the course and spends a long time to one side of the correct heading, increase

these two gains. If the motor is working too hard, and frequently crosses the correct heading, decrease these gains.

P - proportional gain - This value should normally be set low. If it is set too high, the boat will constantly turn

across the desired heading. If it is too low, the boat may fail to maintain course. As it is increased a higher D

gain is needed to compensate (prevent overshoot)

D - derivative gain - This is the gyro gain, and the main driving gain of the autopilot. Most of the corrections

should be as a result of this gain. Once the best value is found it can typically work in a range of conditions,

however, in light air, it can be reduced (along with reducing other gains) to significantly reduce power

consumption especially if the boat is well balanced.

PR - proportional root gain - This gain can be really useful preventing oscillation especially upwind. To use it,

increase it until it takes effect, and gradually back off on the P gain. You will still need some P gain, but it may

be less than half of before if a sufficient PR gain is used. The 1/2 derivative of a linear function is actually

2*sqrt. So in a sense this gain minics the fractional derivative PID filter by providing a useful fractional

component to mix into the correction. It helps to produce a dampened response as it is often not better to

linearly scale feedback with heading error as it can produce overshoot. I generally set this gain to 1-2x the P

gain, which allows for a lower P gain and reduces overshoot.

DD - derivative' gain - This gain is useful to improve reaction time. It can allow for corrections sooner than

they would occur from the D gain alone. To use it, gradually increase this value up to 1.5x the D gain value

without changing other gains, and compare the results.

FF - feed forward gain - This gain is only useful when making course changes. For holding heading it has no

effect. Following a route can cause course changes and this gain will be applied. It can be very useful in

improving the response time since a low P value is normally desirable, large course adjustments can take a

long time to respond without the FF gain. This gain has the main initial contribution when the course is

adjusted.

I - integral gain - This gain does not need to be used to hold a course, however it can compensate if the actual

course held is different from the commanded course. If following routes, and the boat tends to follow along a

line parallel to the route, this will compensate for that error. It is best to start at zero, and very carefully

increase it until the results are improved. If the value is too high, it will simply increase power consumption.

Most users can use a value of 0 for this gain (disabling it) with good results

•

•

•

•

•

•

3.9 Tuning Gains

- 52/63 - GPLv3

3.9.1 Hints

upwind - less D gain, more P (or PR) gain downwind - more D gain, and possibly add DD gain light wind - less gains

- save power strong wind - more gains - needed to operate correctly

For sailing in protected waters, steering a less straight course is a tuning error, and will only increase power

consumption.

If you can tolerate less straight steering it may save power in waves. Generally you just want to keep the sails

pulling, and the average course that you desire. This was always the goal with a mechanical wind vane, and can

save power consumption as well as wear on the autopilot drive motor.

3.9.2 Explanation

The units may seem arbitrary, but to clarify, the P gain, a value of 0.003 means to move the rudder at 0.3% of its

maximum speed for each degree of heading error. So if the boat is off course by 10 degrees, it would move the

actuator at 0.3% of maximum speed on average. Since it moves in bursts, it might make a slight correction for 0.3

seconds every 10 seconds. The P gain usually contributes a small fraction of the overall correction though, but

combined with the PR gain (which is usually a bit higher) the effect is enough to hold course. By comparison, the D

gain, with a value of 0.06 means the rudder would be commanded to move 6% of the maximum speed on average

for each degree per second the boat is yawing. So if the boat is yawing at 5 degrees per second, this could translate

into moving the rudder at full speed 30% of the time (depending on the servo speed limits) The other gains are

computed similarly.

3.10 Configuring Parameters

3.10.1 Servo parameters

There are various parameters that affect the control and operation of the autopilot.

servo.max_current

The first parameter to adjust is the servo.max_current. This sets the stall detection for the drive. If it is set too low,

overcurrent errors will constantly appear and the drive will not move, but if set too high the drive could continue

sending power when the drive is stalled. For typical tiller pilots a range of 4-7 amps is usually correct, and for

hydraulic or larger drives higher values such as 15-20 amps should be used.

servo.slew_speed servo.slew_slow

These are essentially the maximum acceleration/deceleration of the drive. Limiting acceleration gives a smoother

movement with less current spikes (allowing a lower max current setting) but if the value is too low, the reaction

time will be limited. Typically values of 15-30 should be used.

servo.period

The servo period is the minimum amount of time that the motor can move or rest. Essentially it prevents the motor

from making too many short movements. Short movements can give faster corrections and better steering, but at

the expense of wear and power consumption. Typical values of 0.3 or 0.4 work well for most boats in most

conditions, but larger/slower boats or lighter conditions can use higher values, and smaller/faster boats or rough

conditions can consider smaller values.

servo.speed.min

This value limits the minimum speed the motor can move. This is useful because many electric motors become less

efficient the slower they are turning in the autopilot application because of significant friction. For this reason it is

3.9.1 Hints

- 53/63 - GPLv3

typically better to make short fast corrections and spend most of the time not moving the rudder. Setting a

minimum speed ensures that the motor will either move at this speed or remain stopped.

servo.speed.max

This limits the maximum speed of the motor. It may be useful in lighter conditions to slow down the rudder

movement to reduce noise or wear. Usually the faster the drive motor, the better the performance, but if conditions

are light you can simply limit the drive speed by reducing this value.

servo.use_brake

When the servo brake is enabled, the motor controller will essentially short the motor when engaged and holding

course. This can prevent the rudder from backdriving the motor when there is significant weather helm. It is most

useful on monohulls with unbalanced (keel hung) rudders sailing upwind. For other users, it may be preferable not

to have a brake because it allows you to backdrive the motor (dodge objects in the water) quickly without

disengaging the pilot or drive.

3.10.2 Profiles

pypilot supports different profiles to quickly change the settings that are normally adjusted based on the

conditions. These include all of the gains as well as many servo and tack settings. The advantage is that if you tune

the boat to particular conditions, you can create a profile, then change to it in the future when sailing in the same

conditions, but remembering the settings for a variety of conditions to improve handling, power consumption and

even noise.

For example, in light winds, it might be preferable to reduce the servo.speed.max to less than 100% to reduce the

noise the motor makes. Since the power consumption is already minimal in light winds, although most drives are

less efficient below maximum speed overall, this could be a useful compromise to have a quiet autopilot. Similarly

in rough weather it might make sense to ensure both servo.speed.min and servo.speed.max are at 100% for optimal

handling and power consumption.

Another example would be to reduce the gains especially P gain sailing upwind as many boats naturally balance.

This is because on typical sailing rigs, as a boat falls off the wind, the force excerted by the rig on the hull increases

and all of the forward force is on the leeward side of the boat causing it to round up into the wind. Similarly as the

boat points too close into the wind, the sails begin to "stall" reducing their force on the hull causing the boat to fall

off. For this reason many boats can have the rudder locked upwind and maintain a useful course, however an

autopilot is usually benefitial especialy in waves to minimize and dampen this oscillating effect and improve overall

speed. For this reason, a higher D gain and lower P gain can be used upwind, and a separate profile could be

considered for this.

3.10.3 Additional Settings

The maximum values for both motor controller and motor can be specified. Usually they should remain much cooler

(few degrees above ambient at most) but this ensures nothing is damaged in the case of some incorrect wiring or

other fault.

Other options for example the signalk.period can be set to adjust the rate that data is send to the signalk server.

3.11 Operation

3.11.1 enable/disable

The most basic operation is to enable/disable the autopilot. This can be done using the chosen control interface.

Once enabled, the motor controller should light up blue or white indicating it is commanding the motor. The lcd

3.10.2 Profiles

- 54/63 - GPLv3

display no longer shows "standby" but the commanded course. When disabled, manual control is possible to move

the rudder using the buttons or control input, when enabled, the same interface instead adjusts the commanded

heading.

When enabled the commanded heading is reset to the current course.

3.11.2 Modes

The autopilot supports various modes for holding a course

Compass

Compass mode is the most basic mode and should always be supported because of the internal compass sensors.

Other modes may fall-back onto compass mode if data is unavailable, and it provides a means of holding the boat

facing a particular magnetic heading. When starting to use the pilot it is best to try this mode and ensure it is

working correctly, because other modes typically rely on the compass to work correctly as well.

GPS

GPS mode uses the gps heading to adjust the underlying orientation of the boat. This keeps the boat moving in a

particular direction relative to true north. This may not be the direction the boat is facing (leeway and currents) but

it can be useful to ensure the boat is traveling in a particular direction relative to the ground. If the compass has

significant variations this mode can somewhat help to compensate, but because of the low output rate of most GPS,

the compass and gyros are still used to correct the boat motion, and the GPS is used at a slower rate to ensure

these corrections keep the boat moving in the right direction.

NAV

NAV mode is very similar to GPS mode except that if an external plotter such as OpenCPN is sending autopilot

bearing messages (APB) to the pilot, it will adjust the heading command to follow them. This allows for steering to

routes. It may be useful to note that if this mode appears as available then the pilot is receiving such messages, but

you can also switch to a different mode to ignore them.

Wind

Wind mode uses the apparent wind from wind sensors. This will keep the boat facing in a particular angle relative

to the apparent wind. It is possible to tune and dampen the wind sensors if they are noisy, but in general this mode

is most useful when sailing close to the wind and with shifting winds.

True Wind

True Wind mode combines apparent wind from wind sensors and water speed (or gps speed if there is no water

speed) to compute the true wind over water (or ground) The pilot then steers to this angle. It is most useful when

running downwind as sudden accelerations can greatly affect the apparent wind. This helps to compensate this

effect and keep the boat sailing in a more straight direction.

3.11.3 Tacking

The tacking function makes it simpler to tack the boat while under autopilot. When using the remote controls,

generally There are various tacking parameters:

ap.tack.delay

This value is simply how long pypilot will wait from when the tack is commanded before initiating the tacking

routine. It may be useful to allow the user to prepare to release the sheet at the right time. On smaller boats it may

be simpler to use a value of 0 (no delay)

3.11.2 Modes

- 55/63 - GPLv3

ap.tack.angle

This is simply the angle to tack. Typical values are 90-120, but it may vary depending on the boat, wind speed and

sea state. In wind mode, the current angle will be reflected rather than using this value.

tack.rate

This is the speed to turn the boat through the tack in degrees per second. Typically you might just set this high,

and the boat will tack as fast as possible (rudder moves to limit quickly)

tack.threshold

This value sets the point at which the tack is considered complete. For example, a threshold of 100% will likely

overshoot as the boat will not stop tacking until it reaches the target. A value of 50% will initiate holding the new

course when the boat is directly facing the wind which is typically a good starting value (since the boat is already

turning) For boats with quick responses with small waves, even lower values may be useful to prevent overshooting

the tack.

In summary, too high of a threshold tends to overshoot the tack, while too low of a threshold can undershoot (boat

fails to tack or tacks too slowly)

3.11.4 Pilots

pypilot supports various pilot algorithms. The basic pilot is by far the most widely used and proven pilot which uses

an extended PID filter to incorporate square root and second order feedback. Other pilots may have different

capabilities, such as ignoring the compass sensors entirely, or utilizing the rudder feedback directly in the control

loop. These pilots may need to fall back onto the basic pilot if their required inputs are unavailable so it is essential

to ensure performance is adequate using the basic pilot.

3.12 Supported Data Formats

3.12.1 NMEA0183

This is the most universal marine standard and the following sentences can be received: - MWV - apparent and true

wind - VWR - apparent wind (alternative legacy) - VWT - true wind (alternative legacy) - APB - autopilot bearing for

route following - VWH - water speed - LWY - leeway - RMC - gps - RSA - rudder angle (prefered to use a rudder

sensor directly to the motor controller)

The following sentences can be output - MWV - after calibrated - RSA - rudder angle - RMC - if gps filter combines

IMU and GPS data this can provide a high speed output for speed/track - XDR - pitch and roll - HDM - magnetic

heading - ROT - rotation rate

The nmea0183 connections are either on serial ports, usb ports, or via wifi. If the connection is a serial port or

virtual comm port, it will be detected with a baud rate of 4800 or 38400. Sentences received over usb/serial not

used by the autopilot will be relayed to devices connected to wifi.

The wifi connection for nmea0183 data listens on port 20220.

It is possible to simply make a connection to this port in a program like OpenCPN, however the pypilot OpenCPN

plugin has an option to autodetect pypilot and automatically make the connection and if enabled, a duplicate

connection should not be made.

It is possible to monitor the nmea sentences simply using netcat, eg: nc 192.168.14.1 20220

3.11.4 Pilots

- 56/63 - GPLv3

It is also possible to configure a nmea client

Normally data received via wifi is not relayed to other wifi connections though it is possible to override this by

sending a $PYPBS*48 message to the connection.

3.12.2 SignalK

SignalK is an alternate open marine data format. It generally relies on an instance of the signalk-node-server to

distribute data. pypilot can detect this server on the network automatically and begin to receive data from it for

things like wind or gps, however for pypilot to be able to send data to signalk it must be granted access. If you are

running openplotter, the signalk server is normally enabled. Connect to the signalk server in a browser, eg http://

10.10.10.1:3000 Login with administrator privileges, and look for "Access Requests" on the left menu. If pypilot is

able it will request access, and if granted read/write access, pypilot will be able to send data to the signak server.

The following signalk keys are supported:

environment.wind.speedApparent - apparent wind speed

environment.wind.angleApparent - apparent wind angle

environment.wind.speedTrue - true wind speed

environment.wind.angleTrue - true wind angle

navigation.courseOverGroundTrue - gps course

navigation.speedOverGround - gps speed

navigation.position - gps position

steering.rudderAngle - rudder angle

steering.autopilot.target.headingTrue - autopilot target heading

navigation.headingMagnetic - compass heading

navigation.attitude - pitch roll and yaw

navigation.rateOfTurn - rate of turn

navigation.speedThroughWater - water speed

navigation.leewayAngle - leeway

3.13 Advanced Usage

This section describes some more advanced features generally not required for normal use.

3.13.1 SSH access

The autopilot computer can be accessed via SSH. The normal tinypilot login username is "tc" with a password of

"pypilot" eg:

ssh tc@192.168.14.1 password: pypilot $

Once the shell is accessed it is possible to run various commands directly on the shell

3.13.2 Viewing log files

The log files can be accessed from the web interface eg: http://192.168.14.1/logs

but also via the shell $ cd /var/log/ $ ls

Each service has a directory, in that folder the latest log is "current" eg: cd /var/log/pypilot/current cat current

You can also retrieve the log files remotely using scp scp tc@192.168.14.1:/var/log/pypilot/current .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.12.2 SignalK

- 57/63 - GPLv3

3.13.3 pypilot Client

the pypilot_client allows status and control of the autopilot using a simple command-line tool. This tool along with

others may be installed on most linux distributions by installing the python scripts

Without parameters, all the possible pypilot values are listed.

If a parameter is passed as an argument it can be read or set for example, to enable the autopilot execute:

pypilot_client ap.enabled=true

The following command line switches are supported - -c continuous monitoring - -i produce verbose output for the

particular value - -h print information message

There is also a graphical implementation of the client that can be executed with pypilot_scope_wx The graphical

pypilot client functionality is also built into the web interface as well as the opencpn pypilot plugin.

3.13.4 Logging Data

It is possible to monitor and log autopilot data using the commandline tool pypilot_client

For example to view the gyros issue: pypilot_client -c imu.gyro

The output can be redirected to a file to store it, eg: pypilot_client -c rudder.angle > rudder_log

3.13.5 rebuilding software

For most users it may be best to re-image the sdcard to upgrade pypilot software because it ensures that the entire

system is in a known updated state including all the dependencies. It is possible instead to only update the pypilot

package and rebuild it on the autopilot computer. To do this connect to the autopilot computer via ssh: ssh

tc@pypilot.io cd pypilot git pull username@remote:pypilot . pypilot.build reboot

Before running this script ensure pypilot is fully booted, eg: cat /tmp/bootlocal.log has "done"

Often you cannot pull directly from github on the tinypilot because of the security support, so pulling from a

machine on the local network is needed. If these commands are executed the system will update pypilot. It is

essential to perform this step if modifying source code.

You can also test changes without a rebuild by first stopping pypilot, and running it directly sudo sv d pypilot cd

pypilot/pypilot python3 autopilot.py

This is a faster way to test new changes and when verified building the package will ensure the changes are used

on reboot.

If you edit startup scripts, for example in /opt the changes will not be stored to the sdcard on reboot unless the

command filetool.sh -b is executed.

3.13.6 enabling additonal/custom pilot algorithms

In the pypilot/pypilot/pilots folder there are several pilots that are disabled by default. Editing the python file to

comment out the disabled = True line, and rebuilding or restarting pypilot will enable them for testing.

3.13.3 pypilot Client

- 58/63 - GPLv3

3.13.7 pypilot data format

pypilot has it's own data format used internally but also to communicate with remote programs. For example the

OpenCPN pypilot plugin communicates using this format. The tcp port used is 23322 and the format is a simple

key=value for assigning or retrieving data. To get or watch a particular key you would send watch={"key":0} or

replace 0 with the period.

3.14 Upgrading Software

Software can be updated via ssh for development purposes, but the most reliable way to update software is by

imaging the sd card. It is recommended to use a new sd card keeping the old one until the new software is verified

and working in case you need to switch it back.

The image can be downloaded from pypilot.org/downloads and instructions for updating the image are found there.

4. Technical and Support
4.1 Design Decisions

4.1.1 Type of Sensors

The icm20948 is a successor to the mpu9255. These sensors are proven to have adequate data for inertial

navigation. The main advantage I have found in the icm20948 is better quality control compared to the mpu9255,

but the sensors themselves are similar in performance.

One of the most important features is the use of hall sensors for compassing compared to magnetoresistive

sensors. Hall sensors are not nearly as sensitive but are much more repeatable. They are senstive enough for

compassing and the repeatability is more important than the sensitiivty.

4.1.2 Software Design

pypilot is written in python. This language is not the fastest or most efficient, not the easiest to integrate with

certain interfaces, nor is it capabile of expressing algorithms in the most elegant way. What it can do is provide a

safe language that tends to throw understandable exceptions, is relatively easy for a lot of people to understand

and modify, and provide good integration to math, scientific and other libraries. The more performance critical

pieces of pypilot are implemented in c++ and called from python.

The advantages to python include the ability to rapidly develop the program without waiting on recompiling and

avoid unexplained crashes while still having sufficient performance to run on modern low-cost processors.

The software itself utilizes multiprocessing. This can take advantage of multiple core processors but more

importantly separates the logic of the autopilot into separate programs that communicate with eachother and can

be scheduled with different priorities. For example, the main control loops and inertial sensors have realtime

priority to ensure good performance while the data manipulation are more relaxed and can run with normal

process and calibration routines can use idle or spare cpu time.

4.1.3 Hardware Design

The autopilot motor controller is kept separate from the computer for reliability and to ensure a modular design.

3.13.7 pypilot data format

- 59/63 - GPLv3

4.2 Mechanical Description

4.2.1 pypilot computer

Enclosure size 85x58x33mm

ABS plastic

Overall length with mounting tabs and waterproof glands: 115x85mm

3x PG7 glands for motor controller, usb power, usb power output

433mhz wire antenna for receiver

4.2.2 motor controllers

Dimensions of printed circuit boards - pypilot motor controller 77x51mm - midpower motor controller 104x72mm -

highpower motor controller 116x87mm

4.2.3 motor controllers 3D printed enclosures

The 3D printed enclosures are not waterproof. Instead they prevent dust and contamination while allowing some

airflow for cooling. It is possible to mount the motor controllers in waterproof enclosures using glands for each

power wire and a gland for the data cable, however the box should be slightly larger to dissipate heat, and the

labor and cost involved should be considered.

regular motor controller enclosure

•

•

•

•

•

4.2 Mechanical Description

- 60/63 - GPLv3

mid power motor controller enclosure

high power motor controller enclosure

4.2.3 motor controllers 3D printed enclosures

- 61/63 - GPLv3

4.2.4 rudder feedback

The rudder feedback unit consists of a 3d printed body which has delrin bushings. A stainless shaft rotates through

these bushings with a smooth fit. The end of the shaft has a diametrically magnetized magnet which sits just above

a potted angular hall sensor (mlx90316) ensuring the entire design is waterproof and has no potential to wear out

over time. Attached is a lever arm which should be mechanically actuated by the rudder. Typically there is a ball

socket on the end of the lever arm attached to the quadrant. The longer the lever arm, the less play affects the

rudder feedback.

4.3 Technical Specifications

4.3.1 Power Specifications

| Product | Voltage | Idle Current | Idle Power | Max Current | | - | - | - | - | - | - | | pypilot computer | USB-C (5v) |

180mA | 850mW | 280mA | | pypilot motor controller | 9-16v | 5mA | 60mW | 7A | | mid power motor controller |

9-32v | 2mA | 24mW | 15A | | high power motor controller | 9-32v | 2mA | 24mW | 30A | | pypilot rudder feedback |

5v | 14mA | 67mW | 14mA | | control panel | 9-40v | 3.5mA | 42mW | 20mA | | rs422 usb isolator | 5v | ... | ... | ... |

One of the most likely components to fail over time are electrolytic capacitors because they can dry out over time

especially with heat. For this reason I have selected capacitors of the 63V rating even for 12 volt systems because

the larger physical size ensures they dissipate heat and operate at a lower temperature. Furthermore the higher

voltage capacitors tend to have a longer life.

4.4 fuse and internal resistance

Product FuseInternal Resistance

pypilot motor controller 10A <50mΩ

midpower motor controller 20A <35mΩ

highpower motor controller 30A <20mΩ

4.2.4 rudder feedback

- 62/63 - GPLv3

4.5 Additional Support

4.5.1 Raising issues on github

For significant software bugs it is acceptable to raise an issue on github Please do not raise issues for feature

requests or questions for how to use the software.

4.5.2 openmarine forum

The openmarine forum is the preferred way to discuss pypilot. As it is a public forum, other users can help

eachother, and the discussions can be searched in the future. It this both for troubleshooting and issues, but there

is a separate forum for feature requests and another for posting ads to buy and sell used pypilot hardware.

4.5.3 Contact Author

The author can be contacted via email to discuss pypilot. It is best to include pypilot in the subject line to avoid

spam filters. The contact information can be found on pypilot.org

5. Appendex A - Motor controller flags
SYNC - the computer and motor controller are communicating

OVERTEMP_FAULT - either the motor controller or motor have exceeded the temperater limits

OVERCURRENT_FAULT - the stall protection has been triggered

ENGAGED - the controller is receiving commands from the computer to control the rudder

INVALID - the controller has received invalid data, this indicates a data problem

PORT_PIN_FAULT - the end of travel switch for port movement is triggered

STARBOARD_PIN_FAULT - the end of travel switch for starboard movement is triggered

BADVOLTAGE_FAULT - the voltage the motor countroller is reading is outside the correct range

MIN_RUDDER_FAULT - the rudder feedback reached the minimum value

MAX_RUDDER_FAULT - the rudder feedback reached the maximum value

BAD_FUSES - the motor controller fuses are not programmed correctly

PORT_OVERCURRENT_FAULT - indicates the overcurrent was triggered while moving to port, and the motor

will not move further in that direction

STARBOARD_OVERCURRENT_FAULT - indicates the overcurrent was triggered while moving to starboard,

and the motor will not move further in that direction

DRIVER_TIMEOUT - the motor is commanded to move, but no current is measured, can be ignored if current

feedback is not working on the motor controller

SATURATED - the motor is commanded to move faster than it can, it cannot keep up, indicating a faster motor

would improve steering

REBOOTED - the motor controller has rebooted

6. Appendex B - Displayed errors
This is a list of possible errors displayed on the LCD screen

No IMU - The inertial sensors are not detected

IMU Failed - The inertial sensors are detected but unable to communicate

IMU waiting on axes - One or more of the inertial sensors axes is not working

WARNING no motor controller - unable to communicate with the motor controller

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.5 Additional Support

- 63/63 - GPLv3

https://github.com/pypilot/pypilot/issues
https://forum.openmarine.net/forumdisplay.php?fid=18
https://forum.openmarine.net/forumdisplay.php?fid=21
https://forum.openmarine.net/forumdisplay.php?fid=25

	pypilot
	1. Introduction
	1.1 Motivation
	1.2 Philisophy

	2. Hardware and Installation
	2.1 Mounting Instructions
	2.2 Electrical Connections Overview
	2.2.1 Motor controller data connection
	2.2.2 Power
	2.2.3 USB Data
	2.2.4 Clutch Output
	2.2.5 Rudder Feedback
	2.2.6 End of Travel Switches
	2.2.7 Temperature Sensor

	2.3 Maintainance
	2.4 Mechanical Installation
	2.4.1 Suggested drive types
	Tiller-steered boats
	Wheel Steering
	Hydraulic Steering

	2.4.2 Speed of Movement
	2.4.3 Clutch/Emergency disengage
	2.4.4 Range of Travel

	2.5 Remote Controls
	2.5.1 433mhz wireless remotes
	7 key control panel
	8 key control panel
	8 key remote panel

	3. Software and Usage
	3.1 Initial Powerup
	3.1.1 Boot Splash
	3.1.2 led on motor controller
	3.1.3 Power off

	3.2 LCD menu interface
	3.2.1 Gains
	3.2.2 Calibrate
	3.2.3 Settings
	3.2.4 Info

	3.3 pypilot OpenCPN plugin
	3.3.1 Installing the plugin
	3.3.2 pypilot dialog
	3.3.3 gains
	3.3.4 calibration
	3.3.5 settings
	3.3.6 stats

	3.4 python scripts
	3.4.1 pypilot_control
	3.4.2 pypilot_scope
	3.4.3 pypilot_calibration

	3.5 Web interface
	3.5.1 Control
	3.5.2 Gain
	3.5.3 Calibration
	3.5.4 Configuration
	Language
	NMEA Client host:port

	3.5.5 Statistics

	3.6 Configure Wifi
	3.7 Configure LCD Keypad and Remotes
	3.7.1 programming remote control/keypad
	3.7.2 analog inputs
	3.7.3 IR (infared receiver port)
	3.7.4 hat NMEA port
	3.7.5 Remote Mode

	3.8 Calibration Instructions
	3.8.1 Accelerometer Calibration
	3.8.2 Leveling and Alignment
	3.8.3 Compass Calibration
	3.8.4 Heading Offset
	3.8.5 Rudder

	3.9 Tuning Gains
	3.9.1 Hints
	3.9.2 Explanation

	3.10 Configuring Parameters
	3.10.1 Servo parameters
	servo.max_current
	servo.slew_speed servo.slew_slow
	servo.period
	servo.speed.min
	servo.speed.max
	servo.use_brake

	3.10.2 Profiles
	3.10.3 Additional Settings

	3.11 Operation
	3.11.1 enable/disable
	3.11.2 Modes
	Compass
	GPS
	NAV
	Wind
	True Wind

	3.11.3 Tacking
	ap.tack.delay
	ap.tack.angle
	tack.rate
	tack.threshold

	3.11.4 Pilots

	3.12 Supported Data Formats
	3.12.1 NMEA0183
	3.12.2 SignalK

	3.13 Advanced Usage
	3.13.1 SSH access
	3.13.2 Viewing log files
	3.13.3 pypilot Client
	3.13.4 Logging Data
	3.13.5 rebuilding software
	3.13.6 enabling additonal/custom pilot algorithms
	3.13.7 pypilot data format

	3.14 Upgrading Software

	4. Technical and Support
	4.1 Design Decisions
	4.1.1 Type of Sensors
	4.1.2 Software Design
	4.1.3 Hardware Design

	4.2 Mechanical Description
	4.2.1 pypilot computer
	4.2.2 motor controllers
	4.2.3 motor controllers 3D printed enclosures
	regular motor controller enclosure
	mid power motor controller enclosure
	high power motor controller enclosure

	4.2.4 rudder feedback

	4.3 Technical Specifications
	4.3.1 Power Specifications

	4.4 fuse and internal resistance
	4.5 Additional Support
	4.5.1 Raising issues on github
	4.5.2 openmarine forum
	4.5.3 Contact Author

	5. Appendex A - Motor controller flags
	6. Appendex B - Displayed errors

